Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 311-318, 2000.
Article in English | WPRIM | ID: wpr-728148

ABSTRACT

We cultured the rabbit inner medullary collecting duct (IMCD) cells as monolayers on collagen-coated membrane filters, and investigated distribution of the P2Y receptors by analyzing nucleotide-induced short circuit current (Isc) responses. Exposure to different nucleotides of either the apical or basolateral surface of cell monolayers stimulated Isc. Dose-response relationship and cross-desensitization studies suggested that at least 3 distinct P2Y receptors are expressed asymmetrically on the apical and basolateral membranes. A P2Y2-like receptor, which responds to UTP and ATP, is expressed on both the apical and basolateral membranes. In addition, a uracil nucleotide receptor, which responds to UDP and UTP, but not ATP, is expressed predominantly on the apical membrane. In contrast, a P2Y1-like receptor, which responds to ADP and 2-methylthio-ATP, is expressed predominantly on the basolateral membrane. These nucleotides stimulated intracellular cAMP production with an asymmetrical profile, which was comparable to that in the stimulation of Isc. Our results suggest that the adenine and uracil nucleotides can interact with different P2Y nucleotide receptors that are expressed asymmetrically on the apical and basolateral membranes of the rabbit IMCD cells, and that both cAMP- and Ca2+-dependent signaling mechanisms underlie the stimulation of Isc.


Subject(s)
Adenine , Adenosine Diphosphate , Adenosine Triphosphate , Membranes , Nucleotides , Uracil , Uracil Nucleotides , Uridine Diphosphate , Uridine Triphosphate
2.
Korean Circulation Journal ; : 68-77, 1995.
Article in Korean | WPRIM | ID: wpr-66200

ABSTRACT

BACKGROUND: Uracil nucleotides are stored in platelets and all other cells, and are released into the extracellular space upon stimulation. They show various biological responses but their actions and mechanism are not well understood. This study was conducted to investigate the effects of uridine 5'-triphosphate(UTP) on vascular tone and to identify the characteristics of their receptors. METHODS: Aortic ring preparation were made from the rat descending thoracic aorta. Endo-thelial cells were preserved or removed by gentle rubbing, The basal tension of aortic ring was lgm and isometric contraction were recorded on polygraph using force transducer. RESULTS: In aortic ring Precontracted by 100nM norepinephrine, UTP induced dual effect with various concentrations. UTP elicited endothelium-dependent relaxation at low concentrations(100nM-10microM), and endothelium-independent contraction at high concentrations(more than 30microM). Among uracil nucleotides, UDP was as much effective as UTP in vascular tone, but UMP and uridine were not. UTP(pA50 6.15) was more potent than ATP(5.17), ITP(4.75) and other nucleotides(TTP, GTP, CTP). At basal tension, UTP induced relaxation at low concentrations and contraction at hige concentrations in endothelium-intact ring. But in endothelium-removed ring, UTP elicited only contraction. Prior treatment of aortic ring with suramin, a non-selective P2-purinoceptor blocker, inhibited UTP-Induced relaxation and contraction. Reactive blue-2, a P2gamma purinoceptor blocker, inhibited relaxation only, but alpha, beta-methylene ATP, a P2x Purinoceptor blocker, enhanced contractile response. ATP inhibited the UPT-induced relaxation, but 2-methylthio ATP did not alter the effects of UTP. It means that UTP and ATP act at the same receptor but 2-methylthio ATP does not. CONCLUSION: These results suggest that UTP-induced relaxation is mediated by nucleotide receptors on endothelium and the contraction is mediated by pyrimidinoceptors on vascular smooth muscle.


Subject(s)
Animals , Rats , Adenosine Triphosphate , Aorta , Aorta, Thoracic , Endothelium , Extracellular Space , Guanosine Triphosphate , Isometric Contraction , Muscle, Smooth, Vascular , Norepinephrine , Receptors, Purinergic , Receptors, Purinergic P2X , Relaxation , Suramin , Transducers , Uracil Nucleotides , Uridine Diphosphate , Uridine Monophosphate , Uridine Triphosphate , Uridine
SELECTION OF CITATIONS
SEARCH DETAIL